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Goal and Objectives

Goal of the Lecture

e To provide an overview of genomics and the utilization of the UK Biobank in health informatics,
highlighting their importance and potential impact on healthcare and biomedical research.

Objectives

e Introduce the fundamental concepts of genomics, including DNA, genes, and genome
sequencing.

e Explore how genomics serves as a cornerstone for various research disciplines, including
healthcare, biotechnology, and personalized medicine.

e Discuss approaches to accessing genomic data and the importance of data accessibility in
research integration.

e Highlight methodologies for identifying and interpreting disease-causing genes in genomics
research.

e Provide insights into how genomics can serve as a basis for integrating into one's research
interests and contribute to advancements in personalized medicine and disease genetics.
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Phenotype (or Disease)
= Gene function + Environmental action
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Integration of Data for Precision Medicine
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Genetics is the science of the variation of inherited traits

inherited traits and their variations.

Phenotype

Genotype
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From gene to protein to person
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Human Genetics. 12th edit.

Blocked channel

Ricki Lewis.

Organs affected in cystic fibrosis

Sinuses
Inflammation, infection,
and polyps.

Airways
Mucus-clogged bronchi
and bronchioles.
Respiratory infections.

Liver
Blocked small bile ducts
impair digestion.

Pancreas

Blocked ducts prevent
release of digestive
enzymes, impairing
digestion. Diabetes

is possible.

Intestines
Hard stools may block
intestines.

Reproductive tract
Absence of ductus deferens.

N Skin

Salty sweat.
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Human Genomic Variation

Genotype

GTGGCGCGAGCTTCTGAAACTAGGCGGCAGAGGCGGAGCCGCTGTGGCACTGCTGCGCCTCTGCTGCGCCTCGGGTGTCTTTTGCGGCGGTGGGTCGCCGCCGGG
AGAAGCGTGAGGGGACAGATTTGTGACCGGCGCGGTTTTTGTCAGCTTACTCCGGCCAAAAAAGAACTGCACCTCTGGAGCGGGTTAGTGGTGGTGGTAGTGGGT
TGGGACGAGCGCGTCTTCCGCAGTCCCAGTCCAGCGTGGCGGGGGAGCGCCTCACGCCCCGGGTCGCTGCCGCGGCTTCTTGCCCTTTTGTCTCTGCCAACCCCC
ACCCATGCCTGAGAGAAAGGTCCTTGCCCGAAGGCAGATTTTCGCCAAGCAAATTCGAGCCCCGCCCCTTCCCTGGGTCTCCATTTCCCGCCTCCGGCCCGGCCT
TTGGGCTCCGCCTTCAGCTCAAGACTTAACTTCCCTCCCAGCTGTCCCAGATGACGCCATCTGAAATTTCTTGGAAACACGATCACTTTAACGGAATATTGCTGT
TTTGGGGAAGTGTTTTACAGCTGCTGGGCACGCTGTATTTGCCTTACTTAAGCCCCTGGTAATTGCTGTATTCCGAAGACATGCTGATGGGAATTACCAGGCGGC
GTTGGTCTCTAACTGGAGCCCTCTGTCCCCACTAGCCACGCGTCACTGGTTAGCGTGATTGAAACTAAATCGTATGAARATCCTCTTCTCTAGTCGCACTAGCCA
CGTTTCGAGTGCTTAATGTGGCTAGTGGCACCGGTTTGGACAGCACAGCTGTAAAATGTTCCCATCCTCACAGTAAGCTGTTACCGTTCCAGGAGATGGGACTGA
ATTAGAATTCAAACAAATTTTCCAGCGCTTCTGAGTTTTACCTCAGTCACATAATAAGGAATGCATCCCTGTGTAAGTGCATTTTGGTCTTCTGTTTTGCAGACT
TATTTACCAAGCATTGGAGGAATATCGTAGGTAAAAATGCCTATTGGATCCARAAGAGAGGCCAACATTTTTTGAAATTTTTAAGACACGCTGCAACAAAGCAGGT
ATTGACAAATTTTATATAACTTTATAAATTACACCGAGAAAGTGTTTTCTAAAAAATGCTTGCTAAAAACCCAGTACGTCACAGTGTTGCTTAGAACCATAAACT
GTTCCTTATGTGTGTATAAATCCAGTTAACAACATAATCATCGTTTGCAGGTTAACCACATGATAAATATAGAACGTCTAGTGGATAAAGAGGAAACTGGCCCCT
TGACTAGCAGTAGGAACAATTACTAACAAATCAGAAGCATTAATGTTACTTTATGGCAGAAGTTGTCCAACTTTTTGGTTTCAGTACTCCTTATACTCTTAAAAA
TGATCTAGGACCCCCGGAGTGCTTTTGTTTATGTAGCTTACCATATTAGAAATTTAAAACTAAGAATTTAAGGCTGGGCGTGGTGGCTCACGCCTGTAATCCCAG
CACTTTGGGAGGCCGAGGTGGGCGGATCACTTGAGGCCAGAAGTTTGAGACCAGCCTGGCCAACATGGTGAAACCCTATCTCTACTAAAAATACAAAAAATGTGC
TGCGTGTGGTGGTGCGTGCCTGTAATCCCAGCTACACGGGAGGTGGAGGCAGGAGAATCGCTTGAACCCTGGAGGCAGAGGTTGCAGTGAGCCAAGATCATGCCA
CTGCACTCTAGCCTGGGCCACATAGCATGACTCTGTCTCAAAACAAACAAACAAACAAAARACTAAGAATTTAAAGTTAATTTACTTAAAAATAATGAAAGCTAA
CCCATTGCATATTATCACAACATTCTTAGGAAAAATAACTTTTTGAAAACAAGTGAGTGGARATAGTTTTTACATTTTTGCAGTTCTCTTTAATGTCTGGCTARAT
AGAGATAGCTGGATTCACTTATCTGTGTCTAATCTGTTATTTTGGTAGAAGTATGTGARAAAAAATTAACCTCACGTTGAAAAAAGGAATATTTTAATAGTTTTC
AGTTACTTTTTGGTATTTTTCCTTGTACTTTGCATAGATTTTTCAAAGATCTAATAGATATACCATAGGTCTTTCCCATGTCGCAACATCATGCAGTGATTATTT
GGAAGATAGTGGTGTTCTGAATTATACAAAGTTTCCAAATATTGATAAATTGCATTAAACTATTTTAAAAATCTCATTCATTAATACCACCATGGATGTCAGAAA
AGTCTTTTAAGATTGGGTAGAAATGAGCCACTGGAAATTCTAATTTTCATTTGAAAGTTCACATTTTGTCATTGACAACAAACTGTTTTCCTTGCAGCAACAAGA
GTGGCGCGAGCTTCTGAAACTAGGCGGCAGAGGCGGAGCCGCTGTGGCACTGCTGCGCCTCTGCTGCGCCTCGGGTGTCTTTTGCGGCGGTGGGTCGCCGCCGGG
AGAAGCGTGAGGGGACAGATTTGTGACCGGCGCGGTTTTTGTCAGCTTACTCCGGCCARAAAAGAACTGCACCTCTGGAGCGGGTTAGTGGTGGTGGTAGTGGGT
TGGGACGAGCGCGTCTTCCGCAGTCCCAGTCCAGCGTGGCGGGGGAGCGCCTCACGCCCCGGGTCGCTGCCGCGGCTTCTTGCCCTTTTGTCTCTGCCAACCCCC
ACCCATGCCTGAGAGAAAGGTCCTTGCCCGAAGGCAGATTTTCGCCAAGCAAATTCGAGCCCCGCCCCTTCCCTGGGTCTCCATTTCCCGCCTCCGGCCCGGCCT
TTGGGCTCCGCCTTCAGCTCAAGACTTAACTTCCCTCCCAGCTGTCCCAGATGACGCCATCTGAAATTTCTTGGAAACACGATCACTTTAACGGAATATTGCTGT
TTTGGGGAAGTGTTTTACAGCTGCTGGGCACGCTGTATTTGCCTTACTTAAGCCCCTGGTAATTGCTGTATTCCGAAGACATGCTGATGGGAATTACCAGGCGGC
GTTGGTCTCTAACTGGAGCCCTCTGTCCCCACTAGCCACGCGTCACTGGTTAGCGTGATTGAAACTAAATCGTATGAARATCCTCTTCTCTAGTCGCACTAGCCA
CGTTTCGAGTGCTTAATGTGGCTAGTGGCACCGGTTTGGACAGCACAGCTGTAAAATGTTCCCATCCTCACAGTAAGCTGTTACCGTTCCAGGAGATGGGACTGA
ATTAGAATTCAAACAAATTTTCCAGCGCTTCTGAGTTTTACCTCAGTCACATAATAAGGAATGCATCCCTGTGTAAGTGCATTTTGGTCTTCTGTTTTGCAGACT
TATTTACCAAGCATTGGAGGAATATCGTAGGTAAAAATGCCTATTGGATCCAAAGAGAGGCCAACATTTTTTGAAATTTTTAAGACACGCTGCAACAAAGCAGGT
ATTGACAAATTTTATATAACTTTATAAATTACACCGAGAAAGTGTTTTCTAAAAAATGCTTGCTAAAAACCCAGTACGTCACAGTGTTGCTTAGAACCATAAACT
GTTCCTTATGTGTGTATAAATCCAGTTAACAACATAATCATCGTTTGCAGGTTAACCACATGATAAATATAGAACGTCTAGTGGATAAAGAGGAAACTGGCCCCT
TGACTAGCAGTAGGAACAATTACTAACAAATCAGAAGCATTAATGTTACTTTATGGCAGAAGTTGTCCAACTTTTTGGTTTCAGTACTCCTTATACTCTTAAAAA
TGATCTAGGACCCCCGGAGTGCTTTTGTTTATGTAGCTTACCATATTAGAAATTTAAAACTAAGAATTTAAGGCTGGGCGTGGTGGCTCACGCCTGTAATCCCAG
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Human Genomic Variation

GTGGCGCGAGCTTCTGAAACTAGGCGGCAGAGGCGGAGCCGCTGTGGCACTGCTGCGCCTCTGCTGCGCCTCGGGTGTCTTTTGCGGCGGTGGGTCGCCGCCGGG
AGAAGCGTGAGGGGACAGATTTGTGACCGGCGCGGTTTTTGTCAGCTTACTCCGGCCAAARAAAGAACTGCACCTCTGGAGCGGGTTAGTGGTGGTGGTAGTGGGT
TGGGACGAGCGCGTCTTCCGCAGTCCCAGTCCAGCGTGGCGGGGGAGCGCCTCACGCCCCGGGTCGCTGCCGCGGCTTCTTGCCCTTTTGTCTCTGCCAACCCCC
ACCCATGCCTGAGAGAAAGGTCCTTGCCCGAAGGCAGATTTTCGCCAAGCAAATTCGAGCCCCGCCCCTTCCCTGGGTCTCCATTTCCCGCCTCCGGCCCGGCCT
TTGGGCTC CTTCAGCTCAAGACTTAACTTCCCTCCCAGCTGTCCCAGATGACGCCATCTGAAATTTCTTGGAAACACGATCACTTTAACGGAATATTGCTGT
TTTGGGGAAGTGTTTTACAGCTGCTGGGCACGCTGTATTTGCCTTACTTAAGCCCCTGGTAATTGCTGTATTCCGAAGACATGCTGATGGGAATTACCAGGCGGC
GTTGGTCTCTAACTGGAGCCCTCTGTCCCCACTAGCCACGCGTCACTGGTTAGCGTGATTGAAACTAAATCGTATGARAATCCTCTTCTCTAGTCGCACTAGCCA
CGTTTCGAGTGCTTAATGTGGCTAGTGGCACCGGTTTGGACAGCACAGCTGTAAAATGTTCCCATCCTCACAGTAAGCTGTTACCGTTCCAGGAGATGGGACTGA
ATTAGAATTCAAACARATTTTCCAGCGCTTCTGAGTTTTACCTCAGTCACATAATAAGGAATGCATCCCTGTGTAAGTGCATTTTGGTCTTCTGTTTTGCAGACT
TATTTACCAAGCATTGGAGGAATATCGTAGGTAAAAATGCCTATTGGATCCAAAGAGAGGCCAACATTTTTTGAAATTTTTAA! GCTGCAACAAAGCAGGT
ATTGACAAATTTTATATAACTTTATAAATTACACCGAGAAAGTGTTTTCTAAAAAATGCTTGCTAAARACCCAGTACGTCACAG T ¥TGCTTAGAACCATAAACT
GTTCCTTATGTGTGTATAAATCCAGTTAACAACATAATCATCGTTTGCAGGTTAACCACATGATAAATATAGAACGTCTAGTGGATAAAGAGGAAACTGGCCCCT
TGACTAGCAGTAGGAACAATTACTAACAAATCAGAAGCATTAATGTTACTTTATGGCAGAAGTTGTCCAACTTTTTGGTTTCAGTACTCCTTATACTCTTAAAAA
TGATCTAGGACCCCCGGAGTGCTTTTGTTTATGTAGCTTACCATATTAGAAATTTAAAACTAAGAATTTAAGGCTGGGCGTGGTGGCTCACGCCTGTAATCCCAG
CACTTTGGGAGGCCGAGGTGGGCGGATCACTTGAGGCCAGAAGTTTGAGACCAGCCTGGCCAACATGGTGAAACCCTATCTCTACTAAAAATACAAAAAATGTGC
TGCGTGTGGTGGTGCGTGCCTGTAATCCCAGCTACACGGGAGGTGGAGGCAGGAGAATCGCTTGAACCCTGGAGGCAGAGGTTGCAGTGAGCCAAGATCATGCCA
CTGCACTCTAGCCTGGGCCACATAGCATGACTCTGTCTCAAAACAAACAAACAAACAAAAAACTAAGAATTTAAAGTTAATTTACTTAAAAATAATGAAAGCTAA
CCCATTGCATATTATCAC, ATTCTTAGGAAAAATAACTTTTTGAAAACAAGTGAGTGGAATAGTTTTTACATTTTTGCAGTTCTCTTTAATGTCTGGCTAAAT
AGAGATAGCTGGATTCACTTATCTGTGTCTAATCTGTTATTTTGGTAGAAGTATGTGAAAAAAAATTAACCTCACGTTGAAAAAAGGAATATTTTAATAGTTTTC
AGTTACTTTTTGGTATTTTTCCTTGTACTTTGCATAGATTTTTCAAAGATCTAATAGATATACCATAGGTCTTTCCCATGTCGCAACATCATGCAGTGATTATTT
GGAAGATAGTGGTGTTCTGAATTATACAAAGTTTCCAAATATTGATAAATTGCATTAAACTATTTTAAAAATCTCATTCATTAATACCACCATGGATGTCAGAAA
AGTCTTTTAAGATTGGGTAGAAATGAGCCACTGGAAATTCTAATTTTCATTTGAAAGTTCACATTTTGTCATTGACAACAAACTGTTTTCCTTGCAGCAACAAGA
GTGGCGCGAGCTTCTGAAACTAGGCGGCAGAGGCGGAGCCGCTGTGGCACTGCTGCGCCTCTGCTGCGCCTCGGGTGTCTTTTGCGGCGGTGGGTCGCCGCCGGG
AGAAGCGTGAGGGGACAGATTTGTGACCGGCGCGGTTTTTGTCAGCTTACTCCGGCCAAAAAAGAACTGCACCTCTGGAGCGGGTTAGTGGTGGTGGTAGTGGGT
TGGGACGAGCGCGTCTTCCGCAGTCCCAGTCCAGCGTGGCGGGGGAGCGCCTCACGCCCCGGGTCGCTGCCGCGGCTTCTTGCCCTTTTGTCTCTGCCAACCCCC
ACCCATGCCTGAGAGAAAGGTCCTTGCCCGAAGGCAGATTTTCGCCAAGCAAATTCGAGCCCCGCCCCTTCCCTGGGTCTCCATTTCCCGCCTCCGGCCCGGCCT
TTGGGCTCCGCCTTCAGCTCAAGACTTAACTTCCCTCCCAGCTGTCCCAGATGACGCCATCTGAAATTTCTTGGAAACACGATCACTTTAACGGAATATTGCTGT
TT TGGGGAAGTGTTTTACAGCTGCTGGGCACGCTGTATTTGCCTTACTTAAGCCCCTGmGCTGTATTCCGAAGACATGCTGATGGGAATTACCAGGCGGC
GTTGGTCTCTAACTGGAGCCCTCTGTCCCCACTAGCCACGCGTCACTGGTTAGCGTGA' CTAAATCGTATGAAAATCCTCTTCTCYAGTCGCACTAGCCA
CGTTTCGAGTGCTTAATGTGGCTAGTGGCACCGGTTTGGACAGCACAGCTGTAAAATGTTCCCATCCTCACAGTAAGCTGTTACCGTTCCAGGAGATGGGACTGA
ATTAGAATTCAAACAAATTTTCCAGCGCTTCTGAGTTTTACCTCAGTCACATAATAAGGAATGCATCCCTGTGTAAGTGCATTTTGGTCTTCTGTTTTGCAGACT
TATTTACCAAGCATTGGAGGAATATCGTAGGTAAAAATGCCTATTGGATCCAAAGAGAGGCCAACATTTTTTGAAATTTTTAAGACACGCTGCAACAAAGCAGGT
ATTGACAAATTTTATATAACTTTATAAATTACACCGAGAAAGTGTTTTCTAAAAAATGCTTGCTAAAAACCCAGTACGTCACAGTGTTGCTTAGAACCATAAACT
GTTCCTTATGTGTGTATAAATCCAGTTAACAACATAATCATCGTTTGCAGGTTAACCACATGATAAATATAGAACGTCTAGTGGATAAAGAGGAAACTGGCCCCT
TGACTAGCAGTAGGAACAATTACTAACAAATCAGAAGCATTAATGTTACTTTATGGCAGAAGTTGTCCAACTTTTTGGTTTCAGTACTCCTTATACTCTTAARAA
TGATCTAGGACCCCCGGAGTGCTTTTGTTYATGTAGCTTACCATATTAGAAATTTAAAACTAAGAATTTAAGGCTGGGCGTGGTGGCTCACGCCTGTAATCCCAG
CACTTTGGGAGGCCGAGGTGGGCGGATCACTTGAGGCCAGAAGTTTGAGACCAGCCTGGCCAACATGGTGAAACCCTATCTCTACTAAAAATACAAAAAATGTGC
TGCGTGTGGTGGTGCGTGCCTGTAATCCCAGCTACACGGGAGGTGGAGGCAGGAGAATCGCTTGAACCCTGGAGGCAGAGGTTGCAGTGAGCCAAGATCATGCCA
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Genetic influences on disease

Dissected OMIM Morbid Map Scorecard (Updated February 22nd, 2022) :

Class of phenotype Phenotype Gene *

Single gene disorders and traits 6,032 4,218

www.omim.org

Manolio et al., J Clin Invest. (2008)



Genetic Association Study
between genetic variations and phenotype variations

* Obijective: Is there a statistical association?

( Exposure ===  Disease/Outcome }

Genotype Phenotype

Genomic Variation F(’:hen(;té/plctvelarlatlon
at one or more loci ﬂ D s aialiiog
-Quantitative traits

* Candidate genes

Controls g/ Cases

* Genome-wide association study (GWAS) O O .n /.
- Whole Genome-Wide SNPs array (GWAS, genotyping) [7 9 m S gl @
- Whole Genome Sequencing (WGS) |:|n L] Q - @@

T/G

Allele "G" is "associated" with disease

- Whole Exome Sequencing (WES)
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Genome-Wide Association Study (GWAS)

2008 2019

!

s

5

Manolio, Brooks, Collins, J. Clin. Invest., May 2008 As of 2021.02.10, the GWAS Catalog contains
4,865 publications and 247,051 associations.
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Understanding biological pathways of disease

>70,000 loci at genome-wide significance, for 100s of diseases and traits

Cf‘%?'/é)/ Inflammatory Bowel Disease b Age-related Macular Degeneration
\\Z‘};;}-) Autophagy, TGF signaling, other pathways *  Complement system
ﬂ‘"’ —
9 ] L I
%, Heart Disease ’é Atrial Fibrillation
(5P HDL not protective, non-lipid pathways :iz;’__-‘?a Sarcomere and contractile proteins
Schizophrenia <@ Sickel-cell complication
synaptic pruning ‘ < Control of fetal hemoglobin
Alzheimer's Obesity
microglia - regulation of thermogenesis
(/’INTERNATIONAL Mapsto —
\COMMONDISEASE M.'q:’r‘t’;‘-r‘nn\m m)

N ALLIANCE ' Medicine
-
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Post Human Genome Project

Angelina Jolie’s family history ) Virghela
of hereditary breast and
ovarian cancer

reconstructed D_

ANGELINA =

| think the biggest innovations of the
21st century will be at the
intersection of biology and

technology. A new era is beginning.

2019,
$1,000~2,000 (HiSeq X)
<$1,000 (NovaSeq)

Steve Jobs
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Prediction & Prevention

Clinical risk

Cholesterol: per 40 mg/dl increase

Systolic blood pressure:
per 20 mmHg increase

I T [
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Polygenic risk

High polygenic risk

Intermediate
polygenic risk

Combined risk

Action threshold

Low polygenic
risk

0th

Nat Rev Genet. 2018 Sep;19(9):581-590.
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Germ-line or Somatic mutations

S f @ | camees f 9 * Inherited disease : germ-line

i w ‘ l/ : mutation in every cell in our

s Embryo Somatic

" mutation
l e Cancer : somatic mutation in
i a specific cell or tissue
- | T (except inherited cancer)
: Organism area

organism _|
carrie.s the Clonal Theory (Nowell 1976)
mutation.
Half of the l None ofthe =~ e g

gametes J@ o  Gametes J ¥ 4 » gametes

carry the / )/’ of the /fj/ carry the ®) P P Py . .

mutation. A ) organism PP mutation. Normal/ Tumor Tumor  Tumor Clonal Mutation (exist Subclonal Mutations
= P ‘ ; Gilaoa2 v 0 # exi o

(a) Germ-line mutation (b) Somatic cell mutation




Cancer Genomics

Subclone 1

Intertumour heterogeneity Intratumour heterogeneity

Intercellular genetic
and non-genetic heterogeneity

Subclone 2

Clonal heterogeneity

Nature  501(7467):338-45 (2013) 20



Microbiome

* Kill you by acute infection
* Prevent same infection

* Make you fat(ter)

* Give you a heart attack

* Give you cancer

* Rescue you from cancer

Physiological Reviews Published, 2010 Vol. 90 no.

3, 859-904

Minimal hepatic
encephalopathy

21



Personalized Medicine, P4 medicine, Precision Medicine

e Preventive: Shifting from a treatment-centric
approach to a focus on prevention and health
promotion.

e Prediction: Predicting the likelihood of disease
occurrence and preparing accordingly. ’“L

e Personalized: Tailored medicine, individualized Reference
treatment, and customized healthcare. | | Genome

& ® & (]
e Participatory: Empowering patients and doctors @ w @ ln‘
to interact on equal footing, actively utilizing

personal health information, and shifting from
hospital-centric to patient-centric care.

22



We need larger sample size

6,000 people 0 genes! 20,000 people 5 genes 50,000 people 62 genes
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Participation

o]

Pratecting Data and Privacy

m National Institutes of Health
Al of Us Research Program

About Get Involved Funding and Program Partnars News and Events

Questions about COVID-19? |

VISIT CORONAVIRUS.GOV

The future of
health begins
with you.

The All of Us Research Program is inviting cne
million people across the U.S. to help build one of
the most diverse health databases in history. We
welcome participants from all backgrounds.
Researchars will use the data to learn how cur
biology, lifestyle, and environment affect health
This could help tham develop bettar treatments

and ways to prevent different disc
° uk
ioban
Krobi sciarthc discoveres ' imprevs Nemen Pealth

Explore your participation

Who's in my gut!

Do you want to know
which microbas live in your.

Donate!

Take samples from
yourself!

Or your dog!

.%%Qﬁi

'Ne'll do the

sequencing
and analysis!

Mail your samp es
back to ue!

follow instructions!

4 .
We'll mail you =
your kit(si and easy to

See how you
compara to
everyone else!

Enable your research Explore your participation Learn more about UK Biobank Q

Contribute further Stay involved

Thank you for participating

Throughyour participation, UK Biobank is enabling the international research community to tackle the
significant health issues facing us all today. Created as a prospective study over many years, UK Bicbank is in
aunique position to follow your nealth, allowing for vital clues to be uncovered as to why some people are
healthier in old age than others. The wealth of data we hold on you from genetics, lifestyle, imaging, and
health records has also enabled us to respend quickly to the COVID-19 global crisis with pivotal research

into the virus.

ing your health

Basis of your participation

Useful links

Update vour contact details
Learn more about UK Biobank

Our impact

Latestnews
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Genotype to Phenotype and Need for Large Cohorts

History of UK Biobank

2003
—— 2006
2010
2012
— 2013

A
a

»*

Ky

2014
2015
2016

.

— 2017

2018

— 2019
il

SOURCE: UK BIOBANK

UK Biobank established
Recruitment begins
500,000 recruited
Open for research

Physical activity data collection starts
Death and cancer registries made available for study

Hospital outpatient data made available
First study using genetic data is published

Biochemistry studies begin
Mental health questionnaire conducted
Imaging of 100,000 begins

Exome sequencing begins
Genetic data of full cohort released for research

Whole genome sequencing begins (on 50,000 participants)

10,000th registered researcher
Clinical, prescription data for “45% of participants made available

KNOWABLE MAGAZINE

Markers within
genomic regions of

K 5 interest
?;'ﬂ.gps:‘y?f e @ Rare and ~47,000
coding variation Niarers reicbartis
~125,000

Brain imaging (MRI) specific phenotypes

Cognitive tests
~45,000
Hearing and syesigm_(') ' ;
measures A UK Biobank\Axiom
genotype array
Linked to:

Electronic health records
Death register |
Cancer register \

Genome-wide
coverage for improved

= \ performance of array-based
o imputation
\ ~630,000
o) N\ -
\,\ Heart and ™S
lung function R
\ ,,'?cas“,cs Genomics
3 21101
\
\
O &
/ \\ i
/’ ‘Biological samples
/ (blood, saliva, urine)
/ \ \
Physical activit N .
r/no-ntO'nq b4 Heart and body )l
7 imaging (MRI) Biochemical

markers

Whole body dual-energy
X-ray absorptiometry
of bones and joints
j)——————— Body size and
impedance measures

Bycroft et al., Nature (2018) 25



Major challenge & opportunity

Population
800+
- European
—_ . P
0 . East Asian 65
= o
= . South Asian/other Asian o
£ 5991 B African p2
N . Hispanic/Latino E_
<§( Greater Middle Eastern 4 %.
G 4004 . Oceanic —
g Other =
E B Multiple S
O 2 »
S 2001
©
£
0 - =10
2006 2008 2010 2012 2014 2016 2018 2020 Present

Year Nature Medicine 28, 243-250 (2022) 26



Linkage vs. Association Study

Association Analysis

Linkage Analysis

Requires families (within) Families or unrelated population (between)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

______________________________________________________________________________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________________________________________________________________________

The genotype frequency of offspringis determined by It is affected b lati tratificat
parental information and thus is not influenced by : 'S afiected by population stratiication.

population genotype frequency. ‘
 aE® - -
cic| crr s o ® ; e
e U @
e ® O-m = m O® " e®C
c/iC| CIT CIC c/T| CIC cIC
— 1] ] 40% T, 60% C 15% T, 85% C
D e b me i i ’ ’
C/T Cc/IC C/T C/T CIC CiC Cases Controls



Candidate gene approaches

Within the frame of conventional epidemiologic study designs

* Rely on a priori knowledge about disease etiology
- Known region?

- Biological support

* Based on previous studies, such as GWAS and functional studies..

- e.g. type | diabetes : the human leukocyte antigen (HLA) DR3/DR4 alleles
- Alzheimer's disease: Apolipoprotein E (APOE) €2/ €3/ €4 alleles

® Genotyping only specific variants within the gene of interest or conducting
targeted sequencing of the gene.
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Candidate Gene: Where do | start?

Location
- What chromosome? What position on the chromosome?

Exons/UTR

- How many exons? UTR regions?

Size of gene?

Effect of the variants

- a potential biological impact?

- missense variant?

Use the genome browsers
- UCSC genome browser

- Ensemble genome browser

29



Genotyping using genetic marker

TagMan and Fluidigm

Efficient for analyzing multiple SNP
markers, ranging from one to
several dozen, across numerous
samples simultaneously.

Microarray (DNA chip)

lllumina: Infinium Global Screening
Array (GSA)

ThermoFisher: Axiom Precision
Medicine Research Array (PMRA)
Efficient for analyzing over one
million SNP markers
simultaneously.

Commonly used in GWAS
(Genome-Wide Association
Studies) research.

Table 1. Axiom Asia PMRA key marker groups.

Genome-wide imputation grid**—focus

Disease-related markers

>540,000

on EAS and SAS populations Alzheimer's disease >900
NHGRI-EBI GWAS catalog >23,400 Cardio-metabolic >360
Markers of clinical relevance Neurological disorders 16,000
Clinvar >43,000 Diabetes >500
ACMG >6,200 Common variants in cancer >300
Pharmacogenomics and ADME >2,800 Rare missense variants in cancer 52,600
Additional high-value markers (subset of 52,000 predisposition genes i
Clinvar: APOE, BRCA1/2, DMD, CFTR) Rare variants in cardiac predisposition ,830
Immune-related markers genes
Human leukocyte antigen (HLA) >9,000 Rare polymorphic variants from Exome 54700
Killer immunoglobulin-like receptor (KIR) >1,400 Aggregation Gonsortium (EXAC) data
Autoimmune and inflammatory >250 oLl
e e Fingerprinting and sample tracking >300

Y chromosome ~400
LOF >43,000 il

Mitochondrial ~500
Very rare nonsynonymous variants (minor 535,000
allele frequency (MAF) > 0.01%) o Gender determination ~1,000
Expression quantitative trait loci (€QTL) >15,000 Chromosome X SNPs and indels ~25,000
Lung function phenotypes >7,600 Custom variants**

Add 50,000 custom markers, or fully

customize as required

Total markers >750,000

CPIC guideline or known
clinical implementation

Variant in PharmGKB VIP

Level 1a

Level 1b

....... } Hign

Moderate

coverage or accuracy.

>

SoUBPIT

om content without impacting



Sequencing using NGS

Whole genome sequencing Whole exome sequencing

= == = = & o
e s ans Sm  Bo= o= m en Goe
(=] = = m™= o

Targeted sequencing

PPOCPOOGX
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Designing studies that utilize genomic research findings

e Mostly utilizing GWAS research findings (GWAS catalog: https://www.ebi.ac.uk/gwas/)
e Predicting disease risk using Polygenic Risk Score

e Ultilizing genetic information to increase the efficiency of Randomized Controlled Trials
(RCTs)

e Mendelian Randomization: demonstrating causality between exposure and outcome
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Genomic research design

e The study design must align with the study goal.
> |dentifying new candidate genes

> predicting risk for known genes in genomic research.

> Establishing causal relationships in epidemiological studies.

e Considerations during sample recruitment:
> Generalizability

>  Potential bias
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Risk allele frequencies, effect size, and study design

Effect size Rare alleles:
Linkage Common variants

high i ‘ t] ‘ approaches with major
effects
intermediate Low-fre quency

variants with Association approaches
intermediate (GWAS)
effects: Deep

modest sequencing e® |oU
Rare variants -
with small 0 O
® ([ O
effects. o ®
low Functional ?\ ol od
. O O
studies e
MAF<0.1% 0.1%<MAF<0.5% 0.5%<MAF<5% MAF>5%
very rare rare low high

Adapted from McCarthy et al., 2008 & Manolio et. al., 2009 Allele frequency
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PRS Overview

* Test data:
Independent population

Statistically significant

1 2 3 4 S5 6 7 8 910111213 15 17 19 21

Chromosome position
1. Select associated variants 1. Calculate PRS: sum of weighted alleles
2. Obtain risk allele and effect sizes 2. Evaluate associations with outcome
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Move from top SNPs to a genome-wide set for prediction

p— CDKN2A, COKN2B ,
30 -
25
Kathiresan, N Engl | Med (2008) I
- . '
Ripatti, Lancet (2010) e :
Khera, N Engl | Med (2016) N o B s
o . P ' APOAS-A4-C3-Al
2 15- ' .
i § LPA , ABO ADAMTS7
PHACTR1 « *
WDR12 TCF21 3 CYP17A1 p' R
CERRA T Y e
— . :M/es + MRAS v X% B3 ,  pp ubez
PSU)‘& . ! i
Khera*, Chaffin*, — s y
Nat Genet 2018 ﬁ
— 0 1

1 2 3 4 5 6 7 8 9 10 11 121314151617 19 21
Chromosome

Nat Genet. 2018 Sep;50(9):1219-1224.



Predictive power of PRSs

P-value threshold

1.00E-05 0.0005 0.001 0.01 0.03 0.05 0.1 0.3 0:5 1
CAD 0.587 0.607 0.608 0.584 0.569 0.562 0.555 0.548 0.546 0.546
DM 0.604 0.607 0.598 0.582 0.568 0.564 0.560 0.555 0.554 0.554
HDL 0.161 0.121 0.109 0.064 0.042 0.034 0.026 0.020 0.018 0.018
LDL 0.280 0.298 0.293 0.217 0.163 0.143 0.120 0.096 0.091 0.088
TG 0.182 0.196 0.192 0.136 0.099 0.085 0.070 0.055 0.051 0.050
TC 0.254 0.275 0.271 0.207 0.156 0.133 0.109 0.084 0.079 0.077
SCZ 0.694 0.764 0.777 0.817 0.820 0.817 0.812 0.805 0.802 0.801
BD 0.524 0.555 0.562 0.609 0.630 0.636 0.654 0.671 0.673 0.671
MDD_PGC 0.515 0.521 0.521 0.531 0.537 0.536 0.537 0.539 0.540 0.540
MDD_CONVERGE 0.532 0.539 0.544 0.575 0.582 0.585 0.582 0.578 0.577 0.577
Anxiety 0.515 0.519 0.523 0.539 0.543 0.541 0.539 0.538 0.538 0.538

DM, type 2 diabetes; CAD, coronary artery disease; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TC, total cholesterol;
SCZ, schizophrenia; BD, bipolar disorder; MDD_PGC, study of major depressive disorder by the Psychiatric Genomics Consortium; MDD_CONVERGE, study
of major depressive disorder by the CONVERGE Consortium; Anxicty, anxicty disorders (case-control study). For HDL, LDL, TG and TC, predictive power is
mecasured by R%. Predictive power is measured by AUC for the rest of the traits. Full tables arc available in Supplementary Tables $4 and S5.

Bioinformatics. 15;33(6):886-892 (2017)
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Evaluating of predictive performance

e Receiver operating characteristic curves (ROCs)

The sensitivity and specificity of the predictions are
ranked at various cut-off values.

e Area under a ROC curve (AUC)

Sensitivity

Probability of the examined model correctly
identifying a case out of a randomly chosen pair of
case and control samples

e AUC results range from 0.5 (i.e., random) to 1 (i.e.,
100 % accuracy)

0. I 1 I I

0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity
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Performance evaluation

e Accuracy:
(TP+TN)/(TP+FN+TN+FP)

e Sensitivity: TP/(TP+FN)
e Specificity: TN/(TN+FP)

e Positive predictive value (PPV):
TP/(TP+FP)

e Negative predictive value (NPV):

TN/(TN+FN)

Actual condition

Total population
=P+N

Positive (P)

Negative (N)

Prevalence
o
“P+N
Accuracy (ACC)

_TP+TN
T P+N

Balanced accuracy
_ TPR+TNR
(BA) = —7—

Predicted condition
Positive (PP) Negative (PN)
True positive (TP), False negative (FN),

Lk type Il error, miss,
underestimation

False positive (FP),
P i True negative (TN),
type | error, false alarm,
correct rejection
overestimation

Positive predictive value (PPV), e
False omission rate (FOR)

precision FN
= =1-NPV
TP PN
=pp=1-FDR
False discovery rate (FDR) Negative predictive value
=fF=1-PPV (NPV) = 2N =1 -FOR
F, score Fowlkes—Mallows index
= FPIER 2R (FM) = VPPVXTPR
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Distribution of PRS

Locus
OB WN -

Alleles: @ Lowrisk @ High risk
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Top 5% of polygenic Ml score: risk equivalent to monogenic
mutations

Density

Polygenic score of o
6.6 million common variants 10
High Odds g .
. . 3
E polygenic ratio s
0.34 ' 5 ™Y
. i score =
Remainder of = definiti % 2 o;
distribution 5<yp SAEIon 5 o
02 o 8 P
Top 5% 3.3 5, o*%
8 * aMoe
5 ¢ ':." .
o1 Top 1% 4.7 E ol ”
a c\:'o :. LY
o
4 2 0 > 2 4 0 10 20 30 40 50 60 70 80 90 100
Polygenic Score percentile of polygenic score
Khera's slide 41
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Traditional Approach for Genetic Prediction

e Traditional genetic prediction has mainly focused
on rare and monogenic mutations.

- Familial hypercholesterolemia (FH): Mutations in
the LDLR gene, inherited in an autosomal
dominant manner, leading to high LDL levels.

e However, FH affects only 0.4% of the general
population, making it rare, and accounts for
approximately 2% of early myocardial infarctions
(Mls). So, how do we predict and prevent the
remaining 98%?7

Blockage in right

Approximately half of all Mls present as sudden coronary artery
death on first occurrence.

Khera's slide
Nat Genet. 2018 Sep;50(9):1219-1224 42



100 patients with
myocardial
infarction

..........
oooooooooo
..........
..........
..........
..........
..........

TR
)

8

ooooo
ooooo

Circulation. 2019 Mar 26;139(13):1593-1602.

Monogenic

High polygenic

M Risk

3.8-fold

3.7-fold

Can we identify additional at-risk individuals with a polygenic
risk model?
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Heritability varies considerably between complex diseases

* Highly heritable (~70% or greater) diseases

- autoimmune and immune-mediated diseases
- e.g. celiac disease (CD), type-1 diabetes (T1D), and rheumatoid arthritis
- the strongest associations typically localizing to the human leukocyte antigen (HLA) region.

- both in HLA and outside of HLA, many of which are in linkage-disequilibrium (LD) and with different effect
sizes

* Less heritable (~50%)

- common diseases that incur substantial mortality and morbidity worldwide
- e.g. cardiovascular disease (CVD)

- weaker genetic associations spread over a large number of genomic loci

* The simplified assumptions underlying polygenic scoring have been shown to reduce the
predictive power achieved in HLA-associated diseases including CD and T1D, but not in
coronary artery disease and bipolar disorder
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Machine Learning Disease Prediction Models

Model development and internal
validation

Training dataset

Assess predictive
ability of candidate
models in cross-validation

1

I

1

|
g

Sonsitivey
00 02 04 08 08 10
1

T T Tl
00 02 04 06 08 10

l Select best model

Final
model

External validation and assessment
of utility

Serativity

00 02 04 06 08 10

Validate predictive
ability in external data

v

validation dataset

Assess clinical utility and
cost / benefit

7

il

00 02 04 06 08 10
A= ey v

Postive predictive value
05 06 07 08 09 10
el 1

06 07 08 09 10
Negathve predicave vabse

Current Opinion in Genetics & Development

( Genotype dataset

\ 4

Data processing
mcluding data cleaning
and feature selection
to create training data

Training Internal and External Validation

Select a supervised
machine learning
algorithm

overfitting

C hi Test the
eSS 0 e e Cross-Validation prediction with
leaming predictor o
" i - for the prediction an independent
from training data
dataset
> i > > il
>3 ¥ " %
\_// V/ \_//
5-fold CV DATASET
Estimation 1
Estimation 2
Estimation 3

Estimation 4

Estimation 5
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Genomic Risk Score for Coronary Artery Disease
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A genomic risk score for coronary artery disease

Greater association with future coronary artery disease than any single conventional risk factor

Independent of yet complements conventional risk factors
Provides meaningful lifetime risk estimates of coronary artery disease
Quantifiable at or before birth and shows potential for risk screening in early life

J Am Coll Cardiol. 2018;72(16):1883—-93.
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Role of PRS in absolute risk reduction

M Control group M Statin group | M Current smokers W Former smokers
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The percentage of ancestry populations in GWAS

78% European

10% Asian

- 2% African
1% Hispanic

5% Other minorities

8.5% Unreported
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What effect does ancestry have on prediction?

A Global height score B Global schizophrenia score

201

Genetic prediction accuracy decays s
with increasing genetic distance i, EA.:S

between discovery and target data

054

0.0+

A 2 3 4

European ascertainment Of GWAS Global T2D (EUR) score Global T2D (Multi-ethnic) score
signals yield unpredictably biased

risk scores in other populations

0 i
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Am J Hum Genet. 2017 Apr 6; 100(4): 635-649.



Role of PRS in absolute risk reduction

M Control group M Statin group | M Current smokers W Former smokers
7 17
&
s =104
H 2
g :
2 54 ~3.0% g
, =4 c 8-
© o
2 4 b 5.4%
> 3
© L.
o O
s 3 S
o ﬁ J
[e] = 4
¥ 2- 5
S ¢ v
©
9 2 o +1.5%
g1 4
0 T 0~
Low risk Mediumrisk ~ High risk Low risk Medium risk Mediumrisk  High risk
(bottem 20%) (20-80%) (top 20%) (bottom 25%) (25-50%) (50-75%) (top 25%)
PRS categories of genetic risk PRS categories of genetic risk
ARR (%) 1.1 1.3 3.0 ARR (%) 1.5 3.8 2.9 5.4

RRR 0.36 0.32 0.46 RRR 0.52 0.60 0.46 0.55



Polygenic risk prediction accuracy : Ethnicity
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Multi-ancestry PRS show similar performance across ancestry
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GWAS Catalog: knowledgebase and deposition resource

e NHGRI-EBI GWAS Catalog (www.ebi.ac.uk/gwas)

e PheGenl (https://www.ncbi.nim.nih.gov/gap/phegeni)

e Open Targets Genetics (https://genetics.opentargets.org/)

e HuGeAMP Knowledge Portals (https://hugeamp.org/)

e MRC IEU OpenGWAS (https://gwas.mrcieu.ac.uk/)

e PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk/)

e GWAS Central (https://www.gwascentral.org/)
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http://www.ebi.ac.uk/gwas

Showcase of resources provided by the UK Biobank online
biobank™

Welcome to the online showcase of resources. If you are new to using the showcase we recommend you begin by reading the short
introductory User Guide. Please note that the showcase contains only anonymous summary information.

w Essential Information
Information regarding data access and releases.

W Browse
Find data items by navigating according to their category of origin.

W Search

Find data items by searching on keywords and other characteristics.

w Catalogues
Simple listings of database contents and additional resources.

w Downloads
Download supporting utilities.

w Login
Apply for access and enable data download.

Legal notice: Without a written licence from , you may not copy, reproduce, republish, download, distribute, make available to the public or otherwise use any of the content displayed on this
website in whole or in part or permit or assist any third party to do the same, except to the extent permitted at law.

Enabling scientific discoveries that improve human health
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New data & enhancements to UK Biobank

e Imaging: Brain, heart and full body MR imaging, plus full body DEXA scan of the bones and joints and an ultrasound of the
carotid arteries. The goal is to image 100,000 participants, and to invite participants back for a repeat scan some years later.

e Genetics: Whole genome sequencing for all 500,000 participants, whole exome sequencing for 470,000 participants, genotyping
(800,000 genome-wide variants and imputation to 90 million variants).

e Health linkages: Linkage to a wide range of electronic health-related records, including death, cancer, hospital admissions and
primary care records.

° Biomarkers: Data on more than 30 key biochemistry markers from all participants, taken from samples collected at recruitment
and the first repeat assessment.

e Activity monitor: Physical activity data over a 7-day period collected via a wrist-worn activity monitor for 100,000 participants
plus a seasonal follow-up on a subset.

e Online questionnaires: Data on a range of exposures and health outcomes that are difficult to assess via routine health records,
including diet, food preferences, work history, pain, cognitive function, digestive health and mental health.

e Repeat baseline assessments: A full baseline assessment is undertaken during the imaging assessment of 100,000
participants.

e Samples: Blood & urine was collected from all participants, and saliva for 100,000.
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How genes affect human obesity

Sequencing of 640,000 exomes identifies
GPR75 variants associated with protection from
obesity *

Exome-wide discovery analysis of BMI
in 645,626 individuals

Identify rare nonsynonymous
variant sites © by exome sequencing.

Exome sequencing—based discovery of
BMI-associated genes.

(Left) Design for the discovery gene-burden
analysis, with a depiction of follow-up analyses
along the bottom. (Top right) Relationship
between allele frequency and effect-size
estimates for BMI-associated genotypes.

For each gene, estimatg associations with 2
BMI for heterozygous?™ and homozygous?
nonsynonymous variants carriers.

(?? ?;% ?9%? 7| i

(Bottom right) Weight gain for Gpr75+/+ (wild PR
type, WT), Gpr75-/+ (heterozygous, HET), and %’ W Snsoms

Gpr75-/- (knockout, KO) mice during a high-fat
diet challenge. PRS, polygenic risk score.

Follow-up

Fine-mapping PRS invitro invivo

<— Per-allele effect size —

LLL&

of Gpr75 in mice

BMI-associated genotypes

>4 UBR2
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GIPR
@ Burden of rare coding genotypes
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Alternative allele frequency
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14 weeks
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challenge

Parsa Akbari et al. ,Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity.Science373,eabf8683(2021).



Evaluating the Ultility of Polygenic Risk Scores in Identifying

High-Risk Individuals for Eight

0.100

Five-year absolute risks of
site-specific cancers by PRS groups. ¢
Five-year absolute risk of developing
cancer of (A) prostate, (B) breast, (C)  *.-
colorectal, (D) and lung. The

horizontal lines show the estimated c
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5-year risk for individuals with
median PRS (45%-55%) at the age 3

of 50 years for (B) breast cancer or
(C) colorectal cancer. PRS =
polygenic risk score.
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Free Access to UK Biobank GWAS Catalog

e Access the Catalog: Go to the UK Biobank GWAS Catalog website at
https://www.ebi.ac.uk/gwas/ and navigate to the search page.

e Search for Traits or Diseases: Use the search bar or filters provided on the website to search
for specific traits, diseases, or phenotypes of interest. You can also explore the available
studies and associated data.

e Browse Results: Browse through the search results or study listings to find relevant GWAS
studies related to your research interests. Each study entry typically includes information about
the phenotype studied, associated genetic variants, and links to relevant publications.

e View Study Details: Click on the title or entry of a specific study to view more detailed
information about the GWAS, including study design, sample size, statistical methods,
significant genetic variants, and other relevant details.
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Create a Polygenic Risk Score (PRS) for a specific disease of
interest utilizing UK Biobank GWAS Catalog

e Data Collection: Collect genetic information and DNA sequence data related to the disease of interest.
Utilize the UK Biobank GWAS Catalog or other publicly available databases to access relevant GWAS
data associated with the disease.

e Gene Selection: Select genes associated with the disease based on the GWAS findings available in the
UK Biobank GWAS Catalog or other relevant resources. These genes can be identified through
significant associations with the disease in previous studies.

e Assign Gene Weights: Assign weights to the selected genes based on their effect sizes from the
GWAS results. Utilize statistical models to calculate the PRS considering the contribution of each gene.

e PRS Evaluation: Use the calculated PRS to predict and evaluate the disease risk for specific individuals
or populations. Assess the predictive performance of the PRS using relevant metrics such as sensitivity,
specificity, and area under the curve (AUC).

e Validation: Validate the PRS using independent datasets or through cross-validation techniques to
ensure its effectiveness and reliability in predicting disease risk.
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Resources helpful for conducting PRS using GWAS catalog

ComPaSS-GWAS: an alternative method for replication in GWAS studies, which
can reduce type | errors when appropriate replication data are not available.

r2VIM: This resource offers a recurrency-based variable selection method in
random forests specifically designed for genome-wide genetic association
studies.

Tiled Regression Analysis: This software framework can assist in selecting a
set of genetic predictors that explain trait variation using an additive regression
model. This can be useful for identifying relevant genetic variants to include in
PRS analysis.
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Lecture Summary

1. Introduction to Genomics and the UK Biobank

- The lecture begins with an introduction to the basics of genomics, covering essential concepts such as DNA, genes, and
genome sequencing. It also introduces the UK Biobank, highlighting its role as a significant resource in genomic research,
particularly in how it collects and utilizes vast arrays of genetic data to advance health informatics.

2. Integration of Genomics with Health Informatics

- This section discusses the integration of genomic data with health informatics, demonstrating how such data can enhance
healthcare outcomes through improved disease prediction and personalized medicine. It emphasizes the value of genomic data
in understanding complex diseases and developing targeted treatments.

3. Methodologies and Applications

- The lecture details various methodologies used in genomic research, such as genome-wide association studies (GWAS)
and polygenic risk scoring. It explores practical applications of these methodologies using data from the UK Biobank,
showcasing real-world examples of how genomic research contributes to advancements in disease prediction and prevention.

4. Advances and Innovations in Genomic Research

- Advances in genomic technologies and research are covered, including the impact of the Human Genome Project and
subsequent innovations in sequencing and data analysis. The section also highlights how these advances have enabled
researchers to uncover complex genetic interactions and their implications for disease mechanisms.

5. Challenges and Future Directions

- The lecture addresses several challenges facing genomic research, such as ethical issues, the need for large and diverse
datasets, and the technical challenges of data integration and analysis. It also discusses future directions, including the
potential for genomics to further revolutionize personalized medicine, and the ongoing efforts to enhance genomic databases

like the UK Biobank for broader research applications. 03



Conclusion

We outline the comprehensive approaches used in genomic research, starting with study design. The research
design is pivotal as it sets the foundation for data collection and analysis methods. This applies directly to three
main components: :Phenotype, family structure and genotype.

All elements will then be subjected to statistical analysis across the board to engage the data, controlling for
various confounding factors and extracting meaningful patterns. This analysis is very important because it is
very promising and ultimately leads to conclusions that can inform further research, and clinical applications.

This structured approach allows us to leverage the reliability and validity of our research findings to contribute
to a broader understanding of genomic research.

Phenotype \

Family Statistical Scientific

Structure Analysis Inference

Genotype /

Study Design
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